Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(14)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38086082

RESUMO

The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ thenD (n= 0-2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2removal, and materials matrices in other dimensions which may inspire incoming research within these fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...